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The Data Problem

Data source: observational study of acute coronary syndrome
patients from Duke University Medical Center.
Duration of study: 5 years. (start of 1994 - end of 1998)
Sample size: 6033 patients. 3786 have been followed for 5+ years or
died prior to the end of study (1998); the rest have censored survival
times.
Treatment groups: PCI group (3868 patients), MED group (2165
patients).1

Outcome of interest: survival time up to 5 years.
Goal: Compare restricted mean lifetime between the two treatment
groups, to assess treatment effect.

1PCI: percutaneous coronary intervention. MED: medically treated.
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Solution 1: compare group means directly

Throw away censored data (assume non-informative censoring).
Compare group means.
Cons: loss efficiency.
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Solution 2: use Kaplan-Meier estimate

Denote survival function of group j as Sj (t), j = 0, 1.
Kaplan-Meier estimator Ŝj (t), using data from group j .
Mean survival time:

µ = E [T ] =

∫ L

0
P (T ≥ t) dt =

∫ L

0
S (t) dt, (1)

where L = 5 years.
Difference between groups:

δ̂ = µ̂1 − µ̂0 =

∫ L

0

{
Ŝ1 (t)− Ŝ0 (t)

}
dt. (2)

Cons: Not adjust for different covariate distribution between groups,
so the estimated “treatment effect” is likely to be biased.
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Solution 3: use Cox model for Ŝj (t)

Still use
δ̂ = µ̂1 − µ̂0 =

∫ L

0

{
Ŝ1 (t)− Ŝ0 (t)

}
dt (3)

as the treatment effect estimator.
Estimate Ŝj (t) using Cox’s proportional hazards model, which can
incorporate covariate information in the model.
This is the model we focus on.
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Notations

Ti : restricted survival time (≤ L).
Ci : censoring time.
∆i = I (Ti ≤ Ci ): censoring indicator.
Xi = min (Ti ,Ci ): observed failure time.
Zi : covariate vector.
Ni (t) = I (Xi ≤ t,∆i = 1).
Yi (t) = I (Xi ≥ t).
Mi (t) = Ni (t)−

∫ t
0 λi (u)Yi (u) du.

M (t) =
∑n

i=1Mi (t), N (t) =
∑n

i=1Ni (t), Y (t) =
∑n

i=1 Yi (t).
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Review of Cox model

Assume
λ (t | Z ) = λ0 (t) eβT Z , (4)

where λ0 (t) is the unspecified baseline hazard.
The estimator β̂ is the maximizer of the partial likelihood function:

LP (β) =
n∏

i=1

{
eβT Zi (xi )∑

j∈Ri eβT Zj (xi )

}δi

, (5)

where x1, . . . , xn are n observed survival times. Ri = {j : xj ≥ xi} is
the risk set, and δi = I (ti ≤ ci ) is the observed version of ∆i .
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Review of Cox model (continued)

We will use Breslow’s estimator (Breslow, 1972 JRSSB [2]) to
estimate the cumulative baseline hazard:

Λ̂0 (t) =
∑
xi≤t

δi∑
j∈Ri eβ̂T Zj (xi )

. (6)

With the above definitions, Breslow’s estimator can be rewritten as:

Λ̂0 (t) =

∫ t

0

∑n
i=1 dNi (u)∑n

i=1 Yi (u) eβ̂T Zi
. (7)

Asymptotic results: Andersen and Gill, 1982 Annals of Statistics[1].
Basic idea: use counting process martingale representation, then apply
martingale central limit theorem. See Fleming and Harrington’s book
“Counting Process and Survival Analysis” [4] for a good reference.
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Rubin’s causal model (very brief)

For individual i , define T 0
i and T 1

i to be the outcome if the individual
were assigned treatment 0 or 1.
Individual causal treatment effect: δi = T 1

i − T 0
i .

Average causal treatment effect for a group of people:

δ =
1
n

n∑
i=1

δi =

(
1
n

n∑
i=1

T 1
i

)
−
(
1
n

n∑
i=1

T 0
i

)
. (8)

This can be estimated by

δ̂ =

(
1
n

n∑
i=1

T̂ 1
i

)
−
(
1
n

n∑
i=1

T̂ 0
i

)
. (9)
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Our estimator

According to Rubin’s model, we want to compare:
the restricted mean lifetime if everyone were in treatment group 1.
the restricted mean lifetime if everyone were in treatment group 0.

So the estimator is:

δ̂ =

∫ L

0

{
Ŝ1 (u)− Ŝ0 (u)

}
du (10)

=

∫ L

0

{
1
n

n∑
i=1

Ŝ1 (u | Zi )−
1
n

n∑
i=1

Ŝ0 (u | Zi )

}
du. (11)

We estimate the above using two different Cox models.
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Two models

Consider two models. (A being the treament indicator.)
Model 1:

λ (t | A = 0,Z ) = λ0 (t) eβT
0 Z , (12)

λ (t | A = 1,Z ) = λ1 (t) eβT
1 Z . (13)

Model 2:

λ (t | A,Z ) = λ0 (t) eγ0A+γT
1 Z = λ0 (t) eγT W , (14)

where γ =
(
γ0, γ

T
1

)T
and W =

(
A,ZT

)T
.

Bias-variance tradeoff.
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Estimate parameters in model 1

For model 1,

λ (t | A = 0,Z ) = λ0 (t) eβT
0 Z , (15)

λ (t | A = 1,Z ) = λ1 (t) eβT
1 Z . (16)

Use individuals in treatment group 0 to estimate β̂0 and Λ̂0 (u):

Λ̂0 (u) =

∫ u

0

∑n
i=1 (1− Ai ) dNi (t)∑n

i=1 (1− Ai ) eβ̂T
0 ZiYi (t)

. (17)

Use individuals in treatment group 1 to estimate β̂1 and Λ̂1 (u).
Ŝj (u | Zi ) = exp

{
−Λ̂j (u) exp

(
β̂T

j Zi

)}
, j = 0, 1.

δ̂ =
∫ L
0

{
1
n
∑n

i=1 Ŝ1 (u | Zi )− 1
n
∑n

i=1 Ŝ0 (u | Zi )
}
du.
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Estimate parameters in model 2

For model 2,

λ (t | A,Z ) = λ0 (t) eγ0A+γT
1 Z = λ0 (t) eγT W , (18)

where γ =
(
γ0, γ

T
1

)T
and W =

(
A,ZT

)T
.

Use all the data from both treatment groups to get γ̂ and Λ̂0 (u):

Λ̂0 (u) =

∫ u

0

∑n
i=1 dNi (t)∑n

i=1 eγ̂T WiYi (t)
. (19)

Ŝ0 (u | Zi ) = exp
{
−Λ̂0 (u) exp

(
γ̂T
1 Zi

)}
,

Ŝ1 (u | Zi ) = exp
{
−Λ̂0 (u) exp

(
γ̂0 + γ̂T

1 Zi
)}

.

δ̂ =
∫ L
0

{
1
n
∑n

i=1 Ŝ1 (u | Zi )− 1
n
∑n

i=1 Ŝ0 (u | Zi )
}
du.
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Var
(
δ̂
)
: Influence function

Definition
Let Xn = (X1, . . . ,Xn), with Xi i.i.d. following some probability model.
Suppose we are interested in estimating some parameter γ, whose true
value is γ0. An estimator γ̂ (Xn) of γ is said to be asymptotically linear ,
if there exists ϕ (x), such that

√
n (γ̂ (Xn)− γ0) =

1√
n

n∑
i=1

ϕ (Xi ) + oP (1) , (20)

with E [ϕ (X )] = 0 and E
[
ϕ (X )ϕ (X )T

]
finite and non-singular. The

function ϕ (x) is called the influence function for the estimator γ̂ (Xn).

Useful in computing asymptotic variance.

Tianchen Qian (JHSPH) Causal inference with Cox model SLAM Seminar, Mar 14, 2014 15 / 27



Var
(
δ̂
)
: derive IF of δ̂

General idea:
1 Derive influence functions for Ŝ0 (u) and Ŝ1 (u). Use Andersen and

Gill’s result (1982).
2 Derive influence functions for

∫ L
0 Ŝ0 (u) du and

∫ L
0 Ŝ1 (u) du.

3 Derive influence functions for δ̂ =
∫ L
0 Ŝ1 (u) du −

∫ L
0 Ŝ0 (u) du.
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Simulation 1

Under strong null hypothesis: H∗0 : S1 (u | Z ) = S0 (u | Z ) for all Z .
Z ∼ N (0, 1).
P (A = 1 | Z ) = eZ/

(
1 + eZ).

T 0,T 1 ∼ Exponential
(
e1+4Z).

Independent censoring: C ∼ Exponential (0.1).
L = 12.04.

Strong Null Hypothesis δ = 0
δ̂1 δ̂2 δ̂KM

Bias .0289 .0019 -3.0417
se
(
δ̂
)

.2297 .1124 .5114
ŝe
(
δ̂
)

.2302 .1125 .5136
Coverage Prob. .9470 .9520 .0000

2

2Table is extracted from Chen and Tsiatis, 2001 [3].
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Simulation 2

Under Alternative hypothesis: (Here Model 2 is misspecified.)
Z ∼ N (0, 1).
P (A = 1 | Z ) = eZ/

(
1 + eZ).

T 0 ∼ Exponential
(
e1+4Z), T 1 ∼ Exponential

(
e−2+3Z).

Independent censoring: C ∼ Exponential (0.1).
L = 12.04.

Alternative Hypothesis δ = 3.0662
δ̂1 δ̂2 δ̂KM

Bias .0085 .7960 -3.3024
se
(
δ̂
)

.2744 .2047 .5479
ŝe
(
δ̂
)

.2780 .2276 .5475
Coverage Prob. .9524 .0404 .0000

3

3Table is extracted from Chen and Tsiatis, 2001 [3].
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Simulation 3

When no confounding.
Z1,Z2,Z3 ∼ N (0, 1).
P (A = 1 | Z2) = e5Z2/

(
1 + e5Z2

)
.

T 0 ∼ Exponential
(
e1+4Z1

)
, T 1 ∼ Exponential

(
e−2+3Z1

)
.

Independent censoring: C ∼ Exponential (0.1).
L = 12.04.

Bias SSE SEE CP
Z1 -.0055 .2807 .2833 .9500
Z2 -.0666 .7692 .7762 .9426
Z3 -.0294 .5224 .5311 .9536

δ̂1 Z1,Z2 -.0081 .3369 .3378 .9518
Z1,Z3 -.0055 .2822 .2834 .9504
Z2,Z3 -.0660 .7711 .7759 .9414

Z1,Z2,Z3 -.0076 .3390 .3382 .9518
δ̂KM -.0207 .5240 .5311 .9538

4

4Table is extracted from Chen and Tsiatis, 2001 [3].
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Data example

The data mentioned at the beginning of the talk.
Data source: Observational study of acute coronary syndrome
patients from Duke University Medical Center.
Duration of study: 5 years. (start of 1994 - end of 1998)
Sample size: 6033 patients. 3786 have been followed for 5+ years or
died prior to the end of study (1998); the rest have censored survival
times.
Treatment groups: PCI group (3868 patients), MED group (2165
patients).5

Goal: Compare restricted mean lifetime between the two treatment
groups, to assess treatment effect.

5PCI: percutaneous coronary intervention. MED: medically treated.
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Data example: Result

δ̂1 δ̂2 δ̂KM
Estimate .1760 .1725 .3621

Standard error .0377 .0355 .0419

The authors have also carried out a careful examination of the
distribution of covariates by treatment (not presented in the
article), suggesting that patients assigned medication are
prognostically worse on average. Thus, one would expect that
adjusting for prognostic factors would result in a smaller
treatment difference.
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Summary

Used Cox model to compare restricted mean lifetime between two
treatment groups.
Constructed estimators and obtained their asymptotic distribution.
Showed bias-variance tradeoff comparing two Cox models.
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Related work

Zhao et al. (Zhao et al., 2013 JASA[6]) used Cox model to estimate
treatment effect in survival time between groups, and identified which
subgroup benefits the most from the treatment (i.e. among which
subgroup of people the treatment effect is the largest).
Hubbard et al.’s approach (Hubbard, van der Laan and Robins,
2000[5]) for estimating the average causal treatment difference in
survival in observational studies is through the use of inverse
probability weighted estimators. They modeled both the censoring
distribution and the propensity score as functions of the covariates.
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Asymptotic property of β̂ and Λ̂ (t)
Define

S(k) (β, t) =
1
n

n∑
i=1

Z⊗k
i Yi (t) eβT Zi , k = 0, 1, 2, (21)

where a⊗0 = 1, a⊗1 = a, a⊗2 = aaT . Also, define

E (β, t) =
S(1) (β, t)

S(0) (β, t)
, (22)

V (β, t) =
S(2) (β, t)

S(0) (β, t)
− E (β, t)⊗2

, (23)

s(k) (β, t) = E
[

Z⊗k Y (t) eβT Z
]
, k = 0, 1, 2, (24)

e (β, t) =
s(1) (β, t)

s(0) (β, t)
, (25)

v (β, t) =
s(2) (β, t)

s(0) (β, t)
− e⊗2 (β, t) , (26)

and the matrix

Σ =

∫ L

0

v (β0, t) s(0) (β0, t)λ0 (t) dt. (27)

Then under regularity conditions on the covariates and the amount of censoring, we have

√
n
(
β̂ − β0

) D
→ N
(
0,Σ−1

)
. (28)
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Asymptotic property of β̂ and Λ̂ (t)

And under regularity conditions,
√
n
(

Λ̂− Λ0
)
converges weakly on D [0, L]

(Space of Cadlag functions, equipped with Skorohod metric) to a Gaussian
process with zero mean, independent increments, and variance function∫ t

0

λ0 (x)

s(0) (β0, x)
dx + Q (β0, t)T Σ−1Q (β0, t) , (29)

where the vector function Q is given by

Q (β0, t) =

∫ t

0
e (β0, x)λ0 (x) dx . (30)
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Influence function for δ̂1

∫ L

0

[
gT
1 {Zi − µ1 (t, β1)} −

h1 (t)

s(0)
1 (t, β1)

]
Ai dMi (t) (31)

−

∫ L

0

[
gT
0 {Zi − µ0 (t, β0)} −

h0 (t)

s(0)
0 (t, β0)

]
(1− Ai ) dMi (t) (32)

+

∫ L

0

[{S1 (u | Zi )− S0 (u | Zi )} − {S1 (u)− S0 (u)}] du, (33)

where

gj =

∫ L

0

bj (u) du, (34)

hj (t) =

∫ L

t

cj (u) du, (35)

cj (u) = E
{

Sj (u | Z) eβT
0 Z
}
, π = P {A = 0} , (36)

bj (u) =
(
πΣj
)−1
∫ u

0

[
µj
(

t, βj
)

E
{

Sj (u | Z) e
βT

j Z
}
− E
{

ZSj (u | Z) e
βT

j Z
}]

λj (t) dt, (37)

s(0)
j

(
t, βj
)

= E
[

Y (t) e
βT

j Z
]
, j = 0, 1. (38)
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